
Nuclear Chemistry

Mrs. Nielsen Honors Chemistry

<u> Video: Nuclear Stability</u>

What is a Nuclear Reaction?

 A nuclear reaction is a reaction that affects the nucleus of an atom

Result: A more stable nucleus

What makes a nucleus stable?

Low atomic # 1 proton: 1 neutron

Higher atomic # 1 proton: 1.5 neutrons

Nucleons

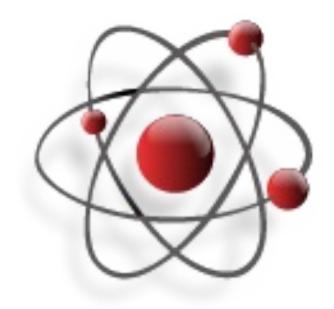
A <u>nucleon</u> is a particle in the nucleus (protons and neutrons)

```
Mass # = protons + neutrons
                                Radium-228
                Atomic # = protons
  Q:What keeps the nucleons together?
A: A very strong attractive nuclear force, also
  known as NUCLEAR BINDING ENERGY
```

Radioactivity

- Radioactive Decay is the spontaneous disintegration of a nucleus into a slightly lighter nucleus, accompanied by the emission of particles, Electromagnetic Radiation, or both.
- A <u>radioactive nuclide</u> is an unstable nucleus that undergoes radioactive decay.

Types of Radioactive Decay


Type	Symbol	Charge
Alpha Particle	α or ⁴ ₂ He	+2
Beta Particle	Ο -1 β	-1
Positron	Ο 1 β	+1
Gamma Ray	Ο O	none
Electron Capture	0 -1	-1

New Symbols for Atomic Particles

Proton: ¹₁p

Neutron: ¹₀n

Electron: 0

Alpha Decay (Alpha Emission)

a

- * An α particle is a Helium nucleus
- * The largest and heaviest particle
- * Reduces # of $^{1}_{1}$ p and $^{1}_{0}$ n

$$Ex) \xrightarrow{210} Po \longrightarrow 4 He + \frac{206}{82} Pb$$

Ο_β

Beta Decay (Beta Emission)

*If too many neutrons, a neutron gets converted into a $^{1}_{1}p$ and an $^{0}_{-1}e$, and the $^{0}_{-1}e$ is emitted

$${}_{0}^{1}n \rightarrow {}_{1}^{1}p + {}_{-1}^{0}\beta$$

Ex)
$$\int_{6}^{14} c$$
 \longrightarrow $\int_{7}^{0} \beta$ + $\int_{7}^{14} N$

Ο₁β

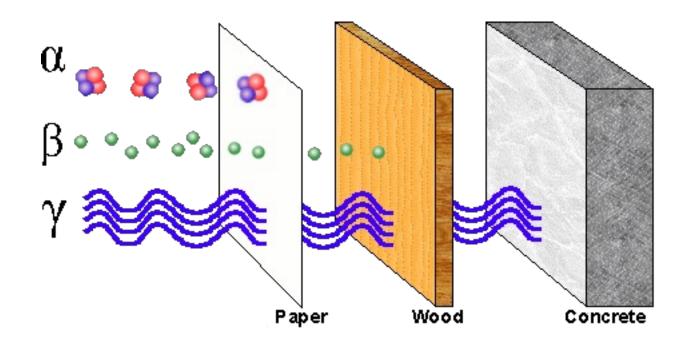
Positron Emission

* If too many protons, a $_{1}^{1}$ p is converted to a $_{0}^{1}$ n by emitting a positron

$$\frac{1}{1}p \to \frac{1}{0}n + \frac{9}{1}b$$
A) $\frac{38}{19}K \longrightarrow \frac{0}{18}Ar$

O Electron Capture

- * Nucleus unstable because too many protons
- * Electron combines with a proton to form a neutron


О О

Gamma Rays

- *High energy Electromagnetic waves emitted from a nucleus as it changes from excited state to ground state
- *similar to _10 dropping energy levels (remember this?)
 - *usually occurs immediately following other types of decay

Ex)
$${}^{38}_{19}K \longrightarrow {}^{0}_{1}\beta + {}^{38}_{18}Ar + {}^{0}_{0}\gamma$$

Penetrating Ability

Mr. Wizard Video (1960s)
"Duck and Cover" Civil Defense Film (1951)